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H I G H L I G H T S  

� Impact of dominant PM sources on associated OP was studied in Milan. 
� Alarmingly high total PAH concentrations (72.81 � 16.59) were observed in winter. 
� PM associated dithiothreitol (DTT) activity levels were higher during the wintertime. 
� Multiple linear regression (MLR) was used to link PM OP to emission sources. 
� Biomass burning activities contributed to 41% of PM OP in Milan metropolitan area.  
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A B S T R A C T   

In this study, we investigated the impact of biomass burning on the oxidative potential of PM2.5 in the metro-
politan area of Milan, Italy. PM2.5 samples were collected on quartz filters during cold (December 2018–February 
2019) and warm (May 2019–July 2019) seasons at the Municipality of Bareggio, a small town located 
approximately 14 km northwest of the Milan city center. The PM2.5 constituents were chemically analyzed, and 
its corresponding oxidative potential was measured by means of the dithiothreitol (DTT) assay. Total PM2.5 mass 
concentration was significantly higher in winter (71.82 � 4.17 μg/m3) compared to summer (16.67 � 0.27 μg/ 
m3), mainly a result of enhanced biomass burning emissions combined with higher atmospheric stability and 
lower mixing during the cold season. The enhanced biomass burning activities during the winter period also 
resulted in very high polycyclic aromatic hydrocarbons (PAHs) concentrations (72.81 � 16.59 ng/m3) which 
were more than 150-fold higher than the warm period values (0.40 � 0.07 ng/m3). PAH concentrations were 
highly correlated with chemical markers of biomass burning (i.e., levoglucosan (R2 ¼ 0.79), and Kþ/K (R2 ¼

0.87)) in the winter period. Spearman correlation analysis between DTT and PM2.5 chemical species showed a 
dominant role of secondary organic aerosols (SOA) and vehicular emissions in summer-time PM2.5 oxidative 
potential (i.e., the capacity of PM2.5 species to oxidize target molecules), while in the wintertime, the DTT values 
were highly correlated with chemical markers of biomass burning, vehicular activities, and re-suspended road 
dust. Multiple linear regression (MLR) analysis identified biomass burning (41%) as the dominant contributor to 
DTT, followed by SOA (20%), re-suspended road dust (18%), and vehicular emissions (16%). Our results un-
derscore the importance of biomass burning to the overall oxidative potential of PM2.5 in the metropolitan area of 
Milan, urging the need to promulgate effective mitigation policies targeting these emissions.   

1. Introduction 

Long-term and short-term exposure to particulate matter (PM) has 

been consistently associated with several adverse health effects, 
including respiratory disorders, cardiovascular diseases, neurological 
disorders, adverse birth outcomes, and increase in lung cancer risk 
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(WHO, 2016; Campbell et al., 2005; Delfino et al., 2005; Penttinen et al., 
2001; Raaschou-Nielsen et al., 2013; Wilhelm and Ritz, 2005). In 
particular, PM2.5 (PM with aerodynamic diameter < 2.5 μm) has been 
the focus of several studies due to its physico-chemical characteristics, 
diverse sources, and harmful health effects (Dockery and Stone, 2007; 
Gauderman et al., 2015; Pope, 2007; Pope III et al., 2002; Valavanidis 
et al., 2008). A number of studies have attributed many of these adverse 
health effects to the generation of reactive oxygen species (ROS) in cells, 
which causes oxidative stress responses involving several 
pro-inflammatory cascades that ultimately lead to adverse health out-
comes (Esposito et al., 2014; Paszti-Gere et al., 2012; Tao et al., 2003). 
Accordingly, several researchers have attempted to develop biological 
and chemical assays that measure the oxidative potential of airborne 
particles (Bates et al., 2019). The dithiothreitol (DTT) assay quantifies 
the capability of PM to increase the transfer rate of electrons from DTT to 
oxygen to produce superoxide radicals, which is directly related to the 
oxidative potential of PM (Borlaza et al., 2018; Cho et al., 2005; De 
Vizcaya-Ruiz et al., 2006; Steenhof et al., 2011). 

Although total PM mass concentration has been widely used as the 
key parameter to investigate PM health effects (Boldo et al., 2011; Lu 
et al., 2015; Riediker et al., 2004; Schwartz et al., 1996), specific PM 
components, including carbonaceous species (i.e., elemental carbon 
(EC), organic carbon (OC), water-soluble organic carbon (WSOC), and 
polycyclic aromatic hydrocarbons (PAHs)) as well as transition metals 
such as V, Mn, Ni, and Cu have been consistently associated with the 
oxidative potential of PM (Akhtar et al., 2010; Bae et al., 2017; Charrier 
and Anastasio, 2012; Cho et al., 2005; Decesari et al., 2017; Janssen 
et al., 2014; Kim et al., 2013; Lin et al., 2015; Pirhadi et al., 2019; 
Samara, 2017; Strak et al., 2012; Yang et al., 2019). Since most of the 
toxic PM components are originated from a multitude of primary and 
secondary sources, direct assessment of the oxidative potential of PM 
from each of these sources and formation mechanisms becomes vital for 
the development of effective mitigation strategies. This approach is of 
particular importance when investigating the toxic burden induced by 
PM on all residents of an urban metropolitan area who are exposed to a 
mixture of PM emissions. 

The Po Valley, located in the heart of the Lombardy region of 
northern Italy, has experienced several air pollution episodes in the past 
decades (Lonati et al., 2008; Putaud et al., 2002). Unique topography, 
high population density in the surrounding region, and wintertime high 
stability conditions favoring fog formation exacerbate particulate air 
pollution in the area (Decesari et al., 2017; Tositti et al., 2014). Previous 
studies in Po Valley indicated that summer-time ambient PM2.5 is 
impacted by traffic emissions and secondary organic aerosol (SOA) 
formation (Daher et al., 2012; Lonati et al., 2005; Perrone et al., 2012), 
while in the wintertime, biomass burning emissions combined with local 
meteorological conditions (i.e., haze and fog processing) elevate PM2.5 
concentrations (Vecchi et al., 2004; Belis et al., 2011; Decesari et al., 
2017; Giannoni et al., 2012). Gualtieri et al. (2011) have found that 
wintertime ambient PM in the area of Milan induced premature mitosis 
and DNA strand break, and attributed the intracellular production of 
reactive oxygen species (ROS) to increased PAH and transition metal 
concentrations during that period. Sancini et al. (2014) showed that 
daily exposure to PM2.5 in Milan poses an acute threat principally to 
susceptible people, such as the elderly and those with unrecognized 
coronary artery or structural heart disease. 

Considering the alarming air quality conditions in the urban/sub-
urban regions of Po Valley, particularly at the metropolitan area of 
Milan in wintertime, there is a need to link the PM toxicity to its sources 
and formation mechanisms in that area. Daher et al. (2012) have pre-
viously reported high concentrations of PM2.5 and its associated oxida-
tive potential (measured by a different assay to the one used in the 
current study) in an urban site at the city center of Milan, heavily 
impacted by vehicular emissions, and confirmed the predictable influ-
ence of traffic emissions on PM2.5 toxicity. Complementary to the work 
of Daher et al. (2012), the main goal of this study was to obtain a 

“baseline estimate” of the urban background PM2.5 toxicity affecting the 
general population of the metropolitan area of Milan by investigating 
the relationship between the oxidative potential of PM2.5 (measured by 
the DTT assay) to its sources in a suburban background far from the city 
center, not directly impacted by vehicular emissions. 

2. Methodology 

2.1. Study area and sample collection 

PM2.5 sampling was conducted at the Municipality of Bareggio, a 
small town within the Milan metropolitan area located 14 km to the 
north-west of central Milan (map shown in Fig. S1(a)), during a cold 
(from December 2018 to February 2019) and a warm (from May 2019 to 
July 2019) period. Due to its location and predominant wind direction 
shown in Fig. S1, the site is mostly upwind of the abundant vehicular 
emissions of the city center. The seasonal averages of temperature, 
relative humidity, and wind speed are also presented in Table S1, based 
on 10-hr average metrological measurements obtained from the closest 
meteorological station, Roveda di Sedriano (MI) (station ID: IMILA-
NOR2) (located within 2 km north-west of Bareggio sampling site). 
According to Table S1, the mean temperature decreased significantly 
from 21.6 � 0.3 �C in summer to 3.6 � 0.3 �C during winter season, 
whereas wind speed and relative humidity increased from summer (2.7 
� 0.1 m/s and 68.5 � 1.0%, respectively) to winter (3.3 � 0.2 m/s and 
72.8 � 1.7%, respectively). 

Ambient PM2.5 samples were collected on prebaked quartz filters (37 
mm, Pall Life Sciences, 2-μm pore size, Ann Arbor, MI) weekly (i.e., each 
sample corresponding to a 5-day period), using 3 collocated Sioutas™ 
Personal Cascade Impactor Samplers (PCISs, SKC Inc., Eighty-Four, PA, 
USA) (Misra et al., 2002; Singh et al., 2003), each operating at flow rate 
of 9 L/min. Although the PCIS design consists of 4 impaction stages 
followed by an after-filter, in this study we used only the first impaction 
stage “A” to remove coarse PM (particles with aerodynamic diameter >
2.5 μm) followed by the “after-filter” to collect PM2.5. Particle bounce 
from the impaction plate was prevented by applying a thin layer of 
grease (Super Lude, NY, USA) on the surface of the impaction plate. The 
weekly average PM2.5 mass concentration was determined gravimetri-
cally as the difference between weights of the unloaded and loaded 
quartz filters after equilibration under controlled laboratory conditions 
(i.e., temperature of 22–24 �C and relative humidity of 40–50%), using a 
microbalance (MT5, Mettler Toledo Inc., Columbus, OH), with a preci-
sion of �0.001 mg. 

2.2. Chemical analysis 

The PM2.5 collected samples were analyzed for their chemical com-
ponents, including elemental and organic carbon (EC, OC), water- 
soluble organic carbon (WSOC), levoglucosan (a tracer of biomass 
combustion (Hennigan et al., 2010; Simoneit and Elias, 2001), poly-
cyclic aromatic hydrocarbons (PAHs), water-soluble ions, total metals, 
and trace elements by the Wisconsin State Lab of Hygiene (WSLH). EC 
and OC mass concentrations were quantified by means of a 
model-4-semi-continuous OC/EC field analyzer (Sunset Laboratory Inc, 
USA) following thermo-optical transmittance (TOT) analysis. WSOC 
concentration was measured through extraction (via ultrapure water) 
and filtration (0.22 μm pore size) of the collected filters by a Sievers 900 
total organic carbon analyzer (Stone et al., 2008). Water-soluble inor-
ganic ions as well as total metals and trace elements were determined by 
ion chromatography (IC) and inductively coupled plasma mass spec-
troscopy (ICP-MS), respectively (Lough et al., 2005). The concentrations 
of levoglucosan and other organic species were measured using gas 
chromatography/mass spectrometry (GC/MS) analysis (Schauer et al., 
1999). 
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2.3. Oxidative potential of PM2.5 

The DTT assay has been widely employed to investigate the PM 
oxidative potential (Cho et al., 2005; Kumagai and Shimojo, 2002; 
Shima et al., 2006; Verma et al., 2011). This assay examines the 
depletion of cellular antioxidants during DTT conversion to its disulfide 
form, in which the rate of DTT consumption is proportional to the 
oxidative potential of PM. Previous studies have documented a wide 
range of PM components including PAHs, quinones, redox-active metals 
such as Fe, Cu, Ni, Mn and Zn, and WSOC as the driving factors in DTT 
consumption rate (Charrier and Anastasio, 2012; Chung et al., 2006; Li 
et al., 2003; Verma et al., 2009). In our study, PM2.5 slurries (i.e., 
methanol-extracted quartz filters) were filtered in a cell-free system, and 
the linear rate of DTT depletion (per units of time) was determined. 
More details about the performance of the DTT assay can be found in 
Shafer et al. (2016). The DTT consumption rate was normalized to both 
PM mass as well as sampled air volume to obtain the intrinsic (in units of 
nmol/min. μg of PM) and extrinsic (in units of nmol/min. m3 of air) 
oxidative potentials, respectively. The intrinsic DTT value relates to the 
oxidative properties of PM per unit mass, whereas the extrinsic DTT 
value takes also into account the PM emission rates and atmospheric 
dilution, and can be directly related to population exposure (Fang et al., 
2015; Pietrogrande et al., 2018; Tuet et al., 2016). Our statistical anal-
ysis was therefore based on the extrinsic DTT values, being more rele-
vant for human exposure to ambient PM and its associated toxicity 
(Visentin et al., 2016; Yu et al., 2019). 

2.4. Source apportionment of the oxidative potential of PM2.5 

We employed bivariate regression and multiple linear regression 
(MLR) analysis to examine the relationship between the oxidative po-
tential of PM2.5 with its chemical composition and source contributions. 
Bivariate correlation analysis was done between the extrinsic DTT 
values (in units of nmol/min. m3) and the mass concentrations of EC, 
OC, WSOC, levoglucosan, inorganic ions, metals, and trace elements. We 
used the calculated Spearman’s rho coefficient (R) as a preliminary in-
dicator to identify species that are highly correlated with DTT. Then, we 
employed MLR between DTT and the target species identified in the 
previous step as source-specific tracers. DTT was treated as the depen-
dent variable while different combinations of chemical source markers 
were selected as independent variables to derive an optimum solution 
resulting in the maximum coefficient of determination (R2) value for 
statistically significant species (Pvalue<0.05). The relative source 
contribution to the oxidative potential of PM2.5 was estimated according 
to the derived R2 value and the standardized regression coefficients 
(Beta) based on the approach that we have already employed in earlier 
studies (Saffari et al., 2014; Shirmohammadi et al., 2016; Taghvaee 

et al., 2019). 

3. Results and discussion 

3.1. PM2.5 mass concentrations and chemical speciation 

Fig. 1 illustrates the mass concentration of ambient PM2.5 as well as 
the bulk chemical composition of collected samples during the warm 
and cold periods. PM2.5 chemical constituents were categorized as 
organic matter (OM), elemental carbon (EC), nitrate, sulfate, ammo-
nium, and other water-soluble ions (i.e., PO4

3� , Cl� , Naþ, and Kþ), as well 
as crustal metals and trace elements. We used conversion factors of 2.0 
and 1.8 to convert OC to OM concentrations in the cold and warm 
seasons, respectively (Saarikoski et al., 2012; Turpin and Lim, 2001). 
Moreover, crustal materials (CM) were calculated based on the oxidized 
form of metal elements utilizing the following equation (Chow et al., 
1994; Hueglin et al., 2005; Marcazzan et al., 2001):  

CM ¼ 1.89 Al þ 1.21 K þ 1.43 Fe þ 1.40 Caþ 1.66 Mg þ 1.7 Ti þ 2.14 Si(1) 

In the above equation, Si concentration was estimated as 3.41 � Al 
(Hueglin et al., 2005), since this species is not quantified by the ICP-MS 
analysis. 

As presented in Fig. 1, PM2.5 mass concentrations were significantly 
higher (Pvalue ¼ 0.02) in the cold season (71.82 � 4.17 μg/m3) compared 
to that of warm season (16.67 � 0.27 μg/m3). The higher PM2.5 levels 
are attributed to the more stable meteorological conditions and lower 
mixing height in the colder periods of the year (Marcazzan et al., 2001; 
Vecchi et al., 2004), and, as it will be discussed in following sections, to 
the increased PM2.5 emissions from biomass burning. The average PM2.5 
mass concentration was 44.22 � 12.81 μg/m3 throughout the year, 
exceeding the European Union (EU) annual mean PM2.5 limit of 25 
μg/m3 (Council Directive, 2008). Moreover, the total PM2.5 mass con-
centration determined gravimetrically was in very good agreement 
(86.2 � 4.0% confidence) with the reconstructed PM2.5 mass by adding 
up the measured chemical species. We also observed higher mass con-
centrations of OM in the colder period, again as a result of more stable 
meteorological conditions combined with increased PM emissions from 
biomass burning. Higher concentrations of ammonium nitrate were also 
observed during the cold season, because the lower temperature and 
higher relative humidity during the cold period favor the particle phase 
formation of NH4NO3 (Mozurkewich, 1993; Stelson and Seinfeld, 1982). 
Finally, the concentrations of sulfate were low and comparable (Pvalue ¼

0.28) in both seasons. 
Fig. 2 presents the seasonal average concentrations of selected 

crustal metals and trace elements in our sampling location. Previous 
studies have indicated that metals and trace elements can originate from 

Fig. 1. Bulk chemical composition and gravimetric mass concentrations of ambient PM2.5 samples collected during warm and cold periods. Error bars correspond to 
one standard error (SE). 
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both anthropogenic and natural sources, including re-suspended road 
dust, and industrial emissions (Almeida et al., 2006, 2005; Harrison 
et al., 2012; Mousavi et al., 2018b; Tian et al., 2016) as well as resus-
pension of crustal soil dust (Almeida et al., 2005; Tian et al., 2016). 
Chemical markers of mineral and road dust (i.e., Ca, Al, Fe, Li, Ti, Cr, 
Mn, Ni, Cu, Zn, and Ba (Harrison et al., 2012; Taghvaee et al., 2018; Tian 
et al., 2016; Yu et al., 2013)) and industrial activities (i.e., Se, As, Cd, Pb, 
and V (Chung et al., 2014; Grezzi et al., 2011; Hagelstein, 2003; Tho-
maidis et al., 2003)) showed higher levels in the colder period of the 
year, due to the higher atmospheric stability and lower mixing height in 
that period. To further investigate the contribution of mineral and road 
dust to PM2.5 mass concentrations, we performed Spearman correlation 
analysis between crustal elements (i.e. surrogates of mineral dust and 
road dust) and tracers of vehicular activities (e.g., EC). Al, Ca, Mn, and 
Fe were highly correlated (with R values in the range of 0.62–0.98), 
leading us to the conclusion that these species are emitted by resus-
pension of mineral (soil) dust. Fe, Cu, and Ni (surrogates of non-tailpipe 
emissions (Godri et al., 2011; Wu et al., 2014) were also highly corre-
lated (with R values in the range of 0.73–0.96) with EC (a tracer of 
tailpipe emissions), corroborating traffic emissions and road dust as the 
main sources of these PM2.5 redox-active trace metals in the area. 

3.2. PM2.5 carbonaceous components 

The average seasonal concentrations of WSOC, water-insoluble 
organic carbon (WIOC), and EC are illustrated in Fig. 3(a). All of these 
species had significantly higher mass concentrations in the cold period 
compared with the warm period (Pvalue ranging from 0.002 to 0.08), due 
to the higher biomass burning activities as well as lower mixing height in 
the cold season, as discussed earlier. It should be noted that the biomass 
burning fraction of WSOC (WSOCbb) was calculated following the 
method suggested by Fine et al. (2004). Briefly, the biomass burning 
fraction of total OC (OCbb) was estimated by multiplying the levoglu-
cosan concentration by 0.135 (Fine et al., 2004), followed by multipli-
cation of OCbb by a factor of 0.71, as suggested by Sannigrahi et al. 
(2006) and Stone et al. (2008) to derive the WSOCbb. The OC concen-
trations in the sampling site of Bareggio were within the range of pre-
viously conducted studies in Northern Italy (Perrino et al., 2014; 
Ricciardelli et al., 2017), reporting a range of 2–3.5 μg/m3 and 5–10.5 
μg/m3 in warm and cold periods, respectively. Similarly, Perrino et al. 
(2014), and Ricciardelli et al. (2017) reported EC concentrations of 
0.2–1.0 μg/m3 (warm season), and 0.5–2.0 μg/m3 (cold season) which 
are in line with the EC levels (0.3–1.7 μg/m3) measured in the current 
study. 

Previous studies have utilized Radon (Rn) concentration to differ-
entiate the effects of atmospheric dilution from temporal variations in 
emission sources (Marcazzan et al., 2001; Vecchi et al., 2007). Since Rn 

concentration was not measured during our sampling campaign, we 
investigated the variations in mass concentration of several PM com-
ponents to evaluate the effect of mixing height. Most of the PM2.5-bound 
metals and trace elements in Lombardy are emitted from anthropogenic 
sources with rather low seasonal variability (e.g., vehicular emissions, 
industrial activities, and power plants (Braga Marcazzan, 1998; Vecchi 
et al., 2004)). Therefore, their temporal variation can be mostly attrib-
uted to the different seasonal meteorological conditions (e.g., atmo-
spheric mixing height). We investigated the winter -to- summer ratio of 
average mass concentration for selected metals and crustal elements, 
and the average of the calculated ratios for the metals and trace elements 
was 4.2 (�2.0), demonstrating the significant effect of lower mixing 
height during the winter season on PM2.5 components. In addition to the 
winter versus summer mass concentration trends of the selected metals 
and trace elements, as shown in Fig. 3 (a), the mass concentration of EC 
and WIOC increased by a factor of 3.7 and 4.6, respectively. This trend is 
in agreement with the observed temporal variation in metals and trace 

Fig. 2. Average concentrations of trace elements and transition metals in warm and cold periods of the study. Error bars indicate one standard error (SE).  

Fig. 3. Mass concentration of: a) carbonaceous components (i.e., elemental 
carbon (EC), organic carbon (OC), water soluble organic carbon (WSOC), and 
water insoluble organic carbon (WIOC)); and b) organic chemical tracer species 
(i.e., levoglucosan, organic SOA tracers, total PAHs) and Kþ/K ratio in both 
sampling periods. Error bars correspond to standard error (SE). 
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elements levels, which can also be mainly attributed to the effect of 
atmospheric stability prevailing during the cold-period, rather than 
significant variations in the emission sources. 

Conversely, mass concentration of WSOCbb (a tracer of biomass 
burning emissions) increased by a factor of ~110, from 0.05 � 0.03 μg/ 
m3 during summer to 5.66 � 2.58 μg/m3 in winter. This substantial 
increase in WSOCbb mass concentration cannot solely be justified by the 
lower wintertime mixing height, and it underscores the role of biomass 
burning activities during winter. Finally, the increase in the WSOCnb 
from almost zero in winter to 2.02 � 0.64 μg/m3 during summer is 
related to enhanced photochemical activity during the summer, as will 
be discussed in section 3.3 of the manuscript. 

The above-mentioned discussion regarding the role of atmospheric 
stability in the concentrations of PM2.5 mass concentration and its 
constituents during different seasons is in line with previous studies in 
the area (Marcazzan et al., 2001; Vecchi et al., 2004). 

3.3. Levoglucosan mass concentration 

Fig. 3(b) indicates the average mass concentration of levoglucosan, 
which is a tracer of biomass burning (Hennigan et al., 2010; Simoneit 
and Elias, 2001), during both periods of the sampling period. According 
to the figure, very high mass concentrations (~2000–2500 ng/m3) were 
observed for this chemical marker of biomass burning emissions in the 
cold season. The levoglucosan mass concentrations measured in this 
study were drastically higher than previously reported values of ~70 
ng/m3 at an urban site in the city center of Milan (Daher et al., 2012). 
This observation is in agreement with the results of Mousavi et al. 
(2019), who reported a much higher biomass burning fraction of black 
carbon (BCbb) in the Milan suburbs compared to the city center. 

Moreover, the results of linear regression analysis revealed a signif-
icantly high correlation (R2 ¼ 0.71) between WSOC and levoglucosan 
during the cold period, further indicating that the majority of WSOC in 
winter is emitted by biomass burning. On the other hand, we observed 
no correlation (R2 ¼ 0.06) between WSOC and levoglucosan during the 
warm season, confirming the minimal contribution of biomass burning 
to PM2.5 in this period. While previous studies have documented WSOC 
as a tracer of SOA formation (Snyder et al., 2009; Sun et al., 2011), this 
carbonaceous compound could also be emitted by biomass burning ac-
tivities. The extremely high levoglucosan mass concentrations during 
the cold season yielded WSOCbb values virtually identical to the 
measured WSOC, implying that all WSOC in the cold season comes from 
biomass combustion. To investigate the origin of WSOC in the warm 
period, measured concentrations of organic SOA species (shown in pa-
rentheses) produced from the oxidation of known precursors such as 
isoprene (i.e., 2-methylthreitol), α-pinene (i.e., 3-hydroxyglutaric acid, 
3-acetyl hexanedioic acid, pinic acid, 2-hydroxy-4-ispropyladipic acid), 
and toluene (i.e., 2,3-dihydroxy-4-oxopentanoic acid) were summed and 
considered as organic SOA tracers in our analysis (Carlton et al., 2009; 
Claeys et al., 2007; Harrison et al., 2016; Hu et al., 2008). Based on the 
linear regression analysis, WSOC was strongly correlated (R2 ¼ 0.73) 
with organic tracers of SOA in the warm season. As shown in Fig. 3(b), 
the concentrations of organic SOA tracers increased substantially from 
the cold (1.21 � 0.73 ng/m3) to warm (18.96 � 3.98 ng/m3) period as a 
result of higher photochemical activities during the warm season. 
Therefore, WSOC during the warm period can be mostly attributed to 
the photochemical oxidation of primary aerosols. 

The WSOC concentrations and the Kþ/K ratio (a tracer of biomass 
burning (Jung et al., 2014; Mousavi et al., 2018a; Soleimanian et al., 
2019)) were also highly correlated (R2 ¼ 0.76) during the colder period 
of our sampling campaign, once again corroborating the major impact of 
biomass burning emissions on WSOC concentration in the cold season. 
In contrast, no meaningful associations were observed between Kþ/K 
and WSOC during the warm period. 

3.4. Total PAHs concentrations 

PAHs are organic compounds with multiple aromatic rings, formed 
during the incomplete combustion of fossil fuels as well as biomass 
burning (Alves et al., 2015; Galarneau, 2008; Mandalakis et al., 2005; 
Simoneit, 2002). Fig. 3(b) presents the seasonal average concentrations 
of total PAHs during the sampling period. The total PAHs mass con-
centrations were significantly (Pvalue ¼ 0.01) higher in the cold (72.81 �
16.59 ng/m3) season, compared to the warm period (0.40 � 0.07 
ng/m3), as a result of the higher rate of primary emissions, particularly 
biomass combustion, in the cold season. A comparison of our reported 
total PAHs levels with prior literature (Agudelo-Casta~neda and Teixeira, 
2014; Call�en et al., 2011; Duan et al., 2007; Hong et al., 2016; Hoseini 
et al., 2016; K�růmal et al., 2013; Manoli et al., 2016; Martellini et al., 
2012; Shirmohammadi et al., 2017) is presented in Fig. 4. The measured 
PAHs concentrations during the cold season were significantly higher 
than most of the European urban background/suburban cities, including 
Thessaloniki (9.40 � 2.94 ng/m3), Brno (31.00 � 6.08 ng/m3), Florence 
(6.7 � 1.00 ng/m3), and even in Los Angeles freeways (3.11 � 1.04 
ng/m3) in the US. In fact, the measured PAHs levels were within the 
range of the highly polluted urban areas of Guangzhou (80.00 � 9.06 
ng/m3), and Tehran (148.43 � 9.80 ng/m3) in Asia. The very high PAHs 
concentrations recorded in the cold season of our campaign is one of the 
most significant findings of this study, particularly because they pertain 
to a suburban site not directly impacted by vehicular PM emissions. The 
major contribution of biomass burning to the PAHs concentrations is 
further supported by the high linear correlations between total PAHs 
and levoglucosan (R2 ¼ 0.79, Fig. S2(a)), and Kþ/K (R2 ¼ 0.87, Fig. S2 
(b)) during the cold period. 

3.5. Oxidative potential of PM2.5 

Fig. 5 shows the seasonal variation in the extrinsic PM2.5 oxidative 
potential measured by the DTT assay in the current study in comparison 
to reported values for urban/suburban sites around the world using the 
same assay. Our measurements indicated a significant increase in the 
DTT levels (Pvalue ¼ 0.003) from the warm (0.85 � 0.10 nmol/min-m3) 
to cold period (3.38 � 0.46 nmol/min-m3). While the measured 
summer-time DTT consumption rate is almost within the range of pre-
viously reported values in Po Valley region (~0.40 nmol/min-m3) 
(Pietrogrande et al., 2019), the winter-time rate had significantly higher 
values in comparison to values reported by previous studies in the area 
(0.06–1.15 nmol/min-m3) (Pietrogrande et al., 2019; Simonetti et al., 
2018). Moreover, the winter-time DTT consumption rates in our study 
were higher than those reported in other European cities, including 
Athens and Lecce (0.40 � 0.03, and 0.26 � 0.03 nmol/min-m3, 
respectively) (Paraskevopoulou et al., 2019; Pietrogrande et al., 2018), 
as well as cities in the U.S., including Atlanta and Los Angeles (0.37 �
0.09, and 0.63 � 0.15 nmol/min-m3, respectively) (Shirmohammadi 
et al., 2017; Verma et al., 2014), but lower than DTT values measured in 
other highly polluted areas, such as the city of Thessaloniki, Greece, 
impacted heavily by biomass combustion in winter (DTT levels of 7.6 �
0.27 nmol/min-m3), Tehran (9.0 � 0.47 nmol/min-m3), and coastal 
cities of Bohai Sea in China (7.0 � 0.30 nmol/min-m3) (Al Hanai et al., 
2019; Liu et al., 2018; Velali et al., 2016). 

The higher wintertime DTT values observed in our sampling site are 
attributed to the significantly increased concentrations of organic 
compounds (i.e., PAHs and levoglucosan) as a result of biomass burning 
combustion for residential heating in the area. Similar observations have 
been previously reported in other European cities (Saffari et al., 2013; 
Simonetti et al., 2018; Velali et al., 2016) relating the enhanced PM 
oxidative potential to biomass burning activities particularly in the 
colder period of the year. Additionally, Decesari et al. (2017) reported 
that a significant portion of the toxicity of airborne PM during the winter 
in Po Valley is produced by environmental conditions favoring fog for-
mation, which lead to the accumulation of redox-active compounds 
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within the droplets, and not simply related to the emission and transport 
of pollutants in the area. In order to provide a more detailed insight into 
the comparative impact of different sources on PM2.5 oxidative poten-
tial, statistical analysis was performed to investigate the correlation 
between the DTT activity and mass concentrations of source specific 
species. 

Table 1 shows the results of Spearman rank regression analysis be-
tween the extrinsic DTT activity and PM2.5 chemical compounds. As 
shown in Table 1, DTT was highly correlated with WSOCnb, organic SOA 

compounds, Al, and to some extent EC during the warm season. Previous 
studies have reported Al and EC as surrogates of re-suspended road dust 
and vehicular emissions, respectively (Hasheminassab et al., 2014; Pun 
et al., 2017; Schauer et al., 2003), while WSOCnb is a chemical marker 
for secondary aerosols in the warm season, as discussed earlier. The 
correlation analysis therefore suggested that secondary organic com-
pounds, and to lesser degree, vehicular emissions, are the main sources 
of the extrinsic oxidative potential of PM2.5 during the warm season. 
Winter-time Spearman correlation results showed that DTT levels were 

Fig. 4. a) Comparison of winter-time total PAHs concentrations in some urban, suburban and rural sites across the globe. b) Site characteristics of cited studies. Error 
bars correspond to standard error (SE). The SE for sites marked by * is not reported in the corresponding studies. 
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highly correlated with WSOCbb, levoglucosan, PAHs, and redox-active 
metals, illustrating the predominant effect of biomass burning, and to 
a lesser degree vehicular emissions and re-suspended road dust in PM2.5 
toxicity during the cold season. The correlation between the oxidative 
potential of PM2.5 and individual chemical species was used as a 
guideline for the selection of specific PM2.5 source markers that were 
employed in the MLR model discussed in the following paragraph. 

The results of the MLR analysis between the extrinsic DTT values and 
chemical species used as source-specific markers are shown in Table 2. 
Based on the output of Spearman correlation analysis, and after trying 
different combinations of source tracers in the MLR model, the best 

linear regression fit resulting in the highest R2 value is comprised of DTT 
as the dependent variable and WSOCnb, WSOCbb, EC, and Al as inde-
pendent variables. Based on the R2 value, the MLR model explained 95% 
of the total variance in DTT activity. The following equation shows the 
best linear fit between predicted DTT and statistically significant (Pvalue 
< 0.05) source tracers:  

DTT ¼ 0.432 �WSOCnb þ 0.373 �WSOCbb þ 0.706 � EC þ 0.001 � Al - 
0.442                                                                                             (2) 

where DTT is in units of nmol/min. m3, Al is in ng/m3, and the units of 
other species (i.e., WSOCnb, WSOCbb, and EC) are all in μg/m3. The 
modeled DTT activity was plotted with respect to measured DTT in Fig. 6 
(a). 

As shown in Table 2, WSOCbb was the dominant contributor to the 
extrinsic PM2.5 oxidative potential, with a corresponding Beta of 0.914, 
followed by WSOCnb, EC, and Al (Beta values ¼ 0.459, 0.351, and 0.399, 
respectively). As previously mentioned, WSOCnb, WSOCbb, EC, and Al 
were treated as chemical source tracers of SOA, biomass burning, 

Fig. 5. a) Oxidative potential measured by DTT in the current study and comparison with sites from previous studies using the same assay. Error bars correspond to 
standard error (SE). b) Site characteristics of cited studies. 

Table 1 
Spearman correlation coefficients (R) between the DTT activity (nmol/min.m3 

air) and mass concentration (μg/m3) of different chemical species. Correlation 
coefficients in bold are statistically significant (Pvalue<0.05).  

Species DTT (nmol/min.m3) 

Winter Summer 

WSOCnb – 0.89 
WSOCbb 0.71 � 0.14 
Levoglucosan 0.70 � 0.14 
Kþ/K 0.40 0.36 
Total PAHs 0.70 � 0.64 
SOA tracers � 0.37 0.79 
V 0.68 � 0.75 
Mn 0.57 � 0.68 
Ni 0.57 � 0.29 
Cu 0.57 � 0.11 
Zn 0.71 � 0.64 
Al 0.70 0.80 
EC 0.64 0.50  

Table 2 
Multiple linear regression (MLR) analysis between DTT (as dependent param-
eter) and source specific chemical markers (independent parameters).  

Source 
chemical 
marker 

Unstandardized 
coefficients (�std. 
error) 

Standardized 
coefficients 
(Beta) 

Partial 
R 

P- 
value 

R2 

(Constant) � 0.442 �0.453 – – – 0.95 
WSOCnb 0.432 �0.174 0.459 0.68 0.042 
WSOCbb 0.373 �0.065 0.914 0.91 0.001 
EC 0.706 �0.302 0.351 0.66 0.052 
Al 0.001 �0.001 0.399 0.82 0.007  
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vehicular emissions, and re-suspended road dust, respectively. Based on 
the derived beta values and the model coefficient of determination, the 
percent contributions of the four identified sources to the oxidative 
potential of PM2.5 are presented in Fig. 6(b). Biomass burning emissions 
contributed to 41% of the overall extrinsic oxidative potential of PM2.5, 
followed by SOA (20%), re-suspended road dust (18%), and vehicular 
emissions (16%). These results further underscore the dominant role of 
biomass burning emissions to the overall toxicity of PM2.5 in the 
metropolitan area of Milan. 

4. Summary and conclusions 

The main goal of this study was to identify and quantify the PM2.5 
major sources contributing to its oxidative potential in the metropolitan 
area of Milan. Total PM2.5 mass concentrations, as well as the concen-
trations of major carbonaceous PM species (i.e., EC, and OC), increased 
from the warm to the cold period. Of particular note were the concen-
tration levels of PAHs, which increased by an approximate 150-fold, 
from 0.40 � 0.07 ng/m3 during the warm period to 72.81 � 16.59 
ng/m3 in the cold season. These PAHs concentrations were among the 
highest reported in recent studies conducted globally. Increased biomass 
burning activities combined with meteorological stability resulted in 
high extrinsic PM2.5 oxidative potential values in the wintertime in the 
study area, significantly higher than those reported in most of European 
cities, and even inside freeways in Los Angeles. Our statistical analysis 
indicated that biomass burning, SOA, re-suspended road dust, and 
vehicular emissions were the major contributing sources to the oxidative 
potential of PM2.5, with corresponding contributions of 41%, 20%, 18%, 
and 16%, respectively, altogether explaining 95% of the measured DTT 
activity. Our results underscore the significant role of biomass burning 
emissions to PM2.5 toxicity in the Milan metropolitan area and call for 

pressing actions by policy makers to mitigate these emissions in order to 
protect the public against their adverse health effects. 
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